Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.293
Filter
1.
Rev. bras. cir. plást ; 39(1): 1-7, jan.mar.2024. ilus
Article in English, Portuguese | LILACS-Express | LILACS | ID: biblio-1525811

ABSTRACT

Introdução: A lipoenxertia é um enxerto autólogo de células do tecido celular subcutâneo, que pode ser utilizada como técnica complementar na reconstrução mamária. Diante disso, a criopreservação de células-tronco mesenquimais provenientes de tecido adiposo (CTDAs) poderia ser uma maneira de realizar a coleta em um tempo cirúrgico e após realizar a lipoenxertia de forma fracionada. O dimetilsulfóxido (DMSO) é um criopreservante utilizado em pesquisas com células, porém é potencialmente tóxico, o que impossibilitaria a utilização de CTDAs criopreservadas na prática clínica. Novos criopreservantes celulares, sem toxicidade, vêm sendo descritos na literatura científica experimental, como as substâncias L-prolina e trealose. Com isso, esse trabalho teve como objetivo avaliar a viabilidade de CTDAs criopreservadas com a combinação de L-prolina e trealose, em um período de até 90 dias. Método: Estudo experimental, no qual foram obtidas amostras de lipoaspirado provenientes de 9 pacientes. A fração celular foi processada e congelada com L-prolina (1,5M) + trealose (0,2M), ou com DMSO + soro fetal bovino (SFB), como controle. Após 30 e 90 dias, as amostras foram descongeladas e a viabilidade celular foi avaliada pela técnica de MTT. Resultados: A análise das CTDAs, após 1 e 3 meses de congelamento, indicou que as amostras tratadas com L-prolina + trealose apresentaram viabilidade semelhante àquelas preservadas com DMSO e SFB (p=0,444). Conclusão: A associação de L-prolina e trealose manteve CTDA viáveis por 30 e 90 dias de congelamento, podendo ser uma alternativa como criopreservante celular sem toxicidade e viabilizando o uso de lipoenxertia seriada.


Introduction: Fat grafting is an autologous graft of cells from subcutaneous tissue, which can be used as a complementary technique in breast reconstruction. Given this, the cryopreservation of adipose tissue-derived mesenchymal stem cells (ADMSCs) could be a way to collect them in one surgical procedure and after performing fractional fat grafting. Dimethyl sulfoxide (DMSO) is a cryopreservative used in cell research, but it is potentially toxic, which would make it impossible to use cryopreserved ADMSCs in clinical practice. New cellular cryopreservatives, without toxicity, have been described in the experimental scientific literature, such as the substances L-proline and trehalose. Therefore, this work aimed to evaluate the viability of ADMSCs cryopreserved with the combination of L-proline and trehalose over up to 90 days. Method: Experimental study in which lipoaspirate samples were obtained from 9 patients. The cellular fraction was processed and frozen with L-proline (1.5M) + trehalose (0.2M) or with DMSO + fetal bovine serum (FBS) as control. After 30 and 90 days, the samples were thawed, and cell viability was assessed using the MTT technique. Results: The analysis of ADMSCs, after 1 and 3 months of freezing, indicated that samples treated with L-proline + trehalose showed similar viability to those preserved with DMSO and SFB (p=0.444). Conclusion: The association of L-proline and trehalose kept ADMSC viable for 30 and 90 days of freezing, and could be an alternative as a cellular cryopreservative without toxicity and enabling the use of serial fat grafting.

2.
Int. j. morphol ; 42(1): 216-224, feb. 2024. ilus
Article in English | LILACS | ID: biblio-1528818

ABSTRACT

SUMMARY: Senile osteoporosis is mainly caused by reduced osteoblast differentiation and has become the leading cause of fractures in the elderly worldwide. Natural organics are emerging as a potential option for the prevention and treatment of osteoporosis. This study was designed to study the effect of resveratrol on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteoporosis mice. A mouse model of osteoporosis was established by subcutaneous injection of dexamethasone and treated with resveratrol administered by gavage. In vivo and in vitro, we used western blot to detect protein expression, and evaluated osteogenic differentiation of BMSCs by detecting the expression of osteogenic differentiation related proteins, calcium deposition, ALP activity and osteocalcin content. Resveratrol treatment significantly increased the body weight of mice, the level of serum Ca2+, 25(OH)D and osteocalcin, ration of bone weight, bone volume/total volume, trabecular thickness, trabecular number, trabecular spacing and cortical thickness in osteoporosis mice. In BMSCs of osteoporosis mice, resveratrol treatment significantly increased the expression of Runx2, osterix (OSX) and osteocalcin (OCN) protein, the level of calcium deposition, ALP activity and osteocalcin content. In addition, resveratrol treatment also significantly increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT in BMSCs of osteoporosis mice. In vitro, resveratrol increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT, Runx2, OSX and OCN protein, the level of calcium deposition, ALP activity and osteocalcin content in BMSCs in a concentration-dependent manner, while SIRT1 knockdown significantly reversed the effect of resveratrol. Resveratrol can attenuate osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells, and the mechanism may be related to the regulation of SIRT1/PI3K/AKT pathway.


La osteoporosis senil es causada principalmente por una diferenciación reducida de osteoblastos y se ha convertido en la principal causa de fracturas en las personas mayores en todo el mundo. Los productos orgánicos naturales están surgiendo como una opción potencial para la prevención y el tratamiento de la osteoporosis. Este estudio fue diseñado para estudiar el efecto del resveratrol en la diferenciación osteogénica de las células madre mesenquimales de la médula ósea (BMSC) en ratones con osteoporosis. Se estableció un modelo de osteoporosis en ratones mediante inyección subcutánea de dexametasona y se trató con resveratrol administrado por sonda. In vivo e in vitro, utilizamos Western blot para detectar la expresión de proteínas y evaluamos la diferenciación osteogénica de BMSC detectando la expresión de proteínas relacionadas con la diferenciación osteogénica, la deposición de calcio, la actividad de ALP y el contenido de osteocalcina. El tratamiento con resveratrol aumentó significativamente el peso corporal de los ratones, el nivel sérico de Ca2+, 25(OH)D y osteocalcina, la proporción de peso óseo, el volumen óseo/ volumen total, el espesor trabecular, el número trabecular, el espaciado trabecular y el espesor cortical en ratones con osteoporosis. En BMSC de ratones con osteoporosis, el tratamiento con resveratrol aumentó significativamente la expresión de las proteínas Runx2, osterix (OSX) y osteocalcina (OCN), el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina. Además, el tratamiento con resveratrol también aumentó significativamente la expresión de SIRT1, p-PI3K/PI3K y p-AKT/AKT en BMSC de ratones con osteoporosis. In vitro, el resveratrol aumentó la expresión de las proteínas SIRT1, p-PI3K/PI3K y p- AKT/AKT, Runx2, OSX y OCN, el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina en BMSC de manera dependiente de la concentración, mientras que La caída de SIRT1 revirtió significativamente el efecto del resveratrol. El resveratrol puede atenuar la osteoporosis al promover la diferenciación osteogénica de las células madre mesenquimales de la médula ósea, y el mecanismo puede estar relacionado con la regulación de la vía SIRT1/PI3K/AKT.


Subject(s)
Animals , Male , Mice , Osteoporosis/drug therapy , Resveratrol/administration & dosage , Osteogenesis/drug effects , Cell Differentiation/drug effects , Blotting, Western , Disease Models, Animal , Sirtuin 1 , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Resveratrol/pharmacology , Mice, Inbred C57BL
3.
Pesqui. bras. odontopediatria clín. integr ; 24: e220128, 2024. tab, graf
Article in English | LILACS, BBO | ID: biblio-1535006

ABSTRACT

ABSTRACT Objective: To assess the effects of cobalt chloride (CoCl2) as a hypoxia mimicking agent on human umbilical cord mesenchymal stem cells (hUCMSCs) expression of HIF-1α and mTOR for use in regenerative dentistry. Material and Methods: Human umbilical cord mesenchymal stem cells were isolated and then cultured. The characteristics of stemness were screened and confirmed by flow cytometry. The experiment was conducted on hypoxia (H) and normoxia (N) groups. Each group was divided and incubated into 24-, 48-, and 72-hours observations. Hypoxic treatment was performed using 100 µM CoCl2 on 5th passage cells in a conventional incubator (37°C; 5CO2). Then, immunofluorescence of HIF-1α and mTOR was done. Data was analyzed statistically using One-way ANOVA and Tukey's HSD. Results: Significant differences were found between normoxic and hypoxic groups on HIF-1α (p=0.015) and mTOR (p=0.000) expressions. The highest HIF-1α expression was found at 48 hours in the hypoxia group, while for mTOR at 24 hours in the hypoxia group. Conclusion: Hypoxia using cobalt chloride was able to increase human umbilical cord mesenchymal stem cells expression of HIF-1α and mTOR.


Subject(s)
Humans , Umbilical Cord/cytology , Chlorides/chemistry , Cobalt/chemistry , Mesenchymal Stem Cells/cytology , Hypoxia/pathology , Analysis of Variance , Flow Cytometry
4.
Journal of Clinical Hepatology ; (12): 96-103, 2024.
Article in Chinese | WPRIM | ID: wpr-1006433

ABSTRACT

ObjectiveTo investigate the effect of transplantation of bone marrow mesenchymal stem cells (BMSCs) co-cultured with bone marrow-derived M2 macrophages (M2-BMDMs), named as BMSCM2, on a rat model of liver cirrhosis induced by carbon tetrachloride (CCl4)/2-acetaminofluorene (2-AAF). MethodsRat BMDMs were isolated and polarized into M2 phenotype, and rat BMSCs were isolated and co-cultured with M2-BMDMs at the third generation to obtain BMSCM2. The rats were given subcutaneous injection of CCl4 for 6 weeks to establish a model of liver cirrhosis, and then they were randomly divided into model group (M group), BMSC group, and BMSCM2 group, with 6 rats in each group. A normal group (N group) with 6 rats was also established. Since week 7, the model rats were given 2-AAF by gavage in addition to the subcutaneous injection of CCl4. Samples were collected at the end of week 10 to observe liver function, liver histopathology, and hydroxyproline (Hyp) content in liver tissue, as well as changes in the markers for hepatic stellate cells, hepatic progenitor cells, cholangiocytes, and hepatocytes. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the N group, the M group had significant increases in the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (P<0.01); compared with the M group, the BMSC and BMSCM2 groups had significant reductions in ALT and AST (P<0.01), and the BMSCM2 group had significantly better activities than the BMSC group (P<0.05). Compared with the N group, the M group had significant increases in Hyp content and the mRNA and protein expression levels of alpha-smooth muscle actin (α-SMA) in the liver (P<0.01); compared with the M group, the BMSC and BMSCM2 groups had significant reductions in Hyp content and the expression of α-SMA (P<0.05), and the BMSCM2 group had a significantly lower level of α-SMA than the BMSC group (P<0.01). Compared with the N group, the M group had significant increases in the mRNA expression levels of the hepatic progenitor cell markers EpCam and Sox9 and the cholangiocyte markers CK7 and CK19 (P<0.01) and significant reductions in the expression levels of the hepatocyte markers HNF-4α and Alb (P<0.01); compared with the M group, the BMSC and BMSCM2 groups had significant reductions in the mRNA expression levels of EpCam, Sox9, CK7, and CK19 (P<0.05) and significant increases in the mRNA expression levels of HNF-4α and Alb (P<0.05), and compared with the BMSC group, the BMSCM2 group had significant reductions in the mRNA expression levels of EpCam and CK19 (P<0.05) and significant increase in the expression level of HNF-4α (P<0.05). ConclusionM2-BMDMs can enhance the therapeutic effect of BMSCs on CCl4/2-AAF-induced liver cirrhosis in rats, which provides new ideas for further improving the therapeutic effect of BMSCs on liver cirrhosis.

5.
International Eye Science ; (12): 251-254, 2024.
Article in Chinese | WPRIM | ID: wpr-1005390

ABSTRACT

Exosomes are extracellular vesicles that facilitate cellular communication by transmitting biomolecules and altering the biochemical characteristics of receptor cells. Mesenchymal stem cell-derived exosomes(MSC-Exos)are lipid bilayer vesicles secreted by mesenchymal stem cells(MSCs). These exosomes have similar functions to MSCs and contain bioactive substances such as proteins, lipids, and nucleic acids. MSC-Exos play a vital role in intercellular communication and are involved in essential physiological processes including immune regulation, tissue damage repair, and angiogenesis promotion. Consequently, they have gained significant attention in research, particularly in the treatment of immune inflammatory diseases, ischemic diseases, and other related fields. This article provides an in-depth analysis of the potential treatment mechanisms for dry eye, focusing on the pathogenesis of the condition, including inflammatory reactions, nerve regeneration, and tissue repair. The objective is to establish a foundation for the application of MSC-Exos in the treatment of dry eye, thereby offering a valuable reference for the future clinical applications.

6.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 76-80, 2024.
Article in Chinese | WPRIM | ID: wpr-1003449

ABSTRACT

@#Periodontal ligament stem cells (PDLSCs) have the potential for multidirectional differentiation and are the preferred seed cells for periodontal tissue regeneration. In recent years, a large number of studies have confirmed that PDLSCs also possess broad immunomodulatory properties. Therefore, in-depth exploration of their specific molecular mechanisms is of great significance for the treatment of periodontitis. The aim of this paper is to summarize the research progress on the regulation of PDLSCs on various immune cells and the effect of the inflammatory environment on the immune characteristics of PDLSCs to provide an important theoretical basis for the allotransplantation of PDLSCs and improve the therapeutic effect of periodontal tissue regeneration. Studies have shown that PDLSCs possess a certain degree of immunosuppressive effect on both innate and acquired immune cells, and inflammatory stimulation may lead to the impairment of the immunoregulatory properties of PDLSCs. However, current studies are mainly limited to in vitro cell tests and lack in-depth studies on the immunomodulatory effects of PDLSCs in vivo. In vivo studies based on cell lineage tracing and conditional gene knockout technology may become the main directions for future research.

7.
J. oral res. (Impresa) ; 12(1): 86-99, abr. 4, 2023. ilus
Article in English | LILACS | ID: biblio-1512278

ABSTRACT

Objective: The objective of this study was to investigate the morphology, proliferation, and differentiation of gingival mesenchymal stem cells (GMSCs) irradiated with a 970 nm Diode Laser (LLLT). It is essential to validate the efficacy of treatment, optimize irradiation conditions and guarantee the safety and quality of stem cells for future use in dental applications. Materials and Methods: GMSCs were cultured in standard conditions and irradiated with a Diode laser (970 nm, 0.5W) with an energy density of 9J/cm2. Cell proliferation was assessed with the WST-1 proliferation kit. GMSCs were differentiated into chondrogenic and osteogenic lineages. Cell morphology was performed with Hematoxylin/eosin staining, and quantitative nuclear analysis was done. Cell viability was monitored with trypan blue testing. Results: GMSCs subjected to irradiation demonstrated a significant increase in proliferation at 72 hours compared to the non-irradiated controls (p=0.027). This indicates that the 970 nm diode laser has a stimulatory effect on the proliferation of GMSCs. LLLT-stimulated GMSCs exhibited the ability to differentiate into chondrogenic and osteogenic lineages. A substantial decrease in cell viability was observed 24 hours after irradiation (p=0.024). However, after 48 hours, the cell viability recovered without any significant differences. This indicates that there might be a temporary negative impact on cell viability immediately following irradiation, but the cells were able to recover and regain their viability over time. Conclusions: This study support that irradiation with a 970 nm diode laser could stimulate the proliferation of GMSCs, maintain their ability to differentiate into chondrogenic and osteogenic lineages, and has minimal impact on the mor- phological characteristics of the cells. These results support the potential use of NIR Lasers in combination with GMSCs as a promising strategy for dental treatments.


Objetivo: El objetivo de este estudio fue investigar la morfología, proliferación y diferenciación de las células madre mesenquimatosas (GMSC) irradiadas con un láser de diodo de 970 nm (LLLT). Es fundamental validar la eficacia del tratamiento, optimizar las condiciones de irradiación y garantizar la seguridad y calidad de las células madre para su uso futuro en aplicaciones dentales.Materiales y Métodos: Las GMSC se cultivaron en condiciones estándar y se irradiaron con un láser de diodo (970 nm, 0,5 W) con una densidad de energía de 9 J/cm2. La proliferación celular se evaluó con el kit de proliferación WST-1. Las GMSC se diferenciaron en linajes condrogénicos y osteogénicos. La morfología celular se realizó con tinción de hematoxilina/eosina y se realizó un análisis nuclear cuantitativo. La viabilidad celular se controló con prueba de azul de tripano. Resultados: Las GMSC sometidas a irradiación demostraron un aumento significativo en la proliferación a las 72 horas en comparación con los controles no irradiados (p=0,027). Esto indica que el láser de diodo de 970 nm tiene un efecto estimulante sobre la proliferación de GMSC. Las GMSC estimuladas con LLLT exhibieron la capacidad de diferenciarse en linajes condrogénicos y osteogénicos. Se observó una disminución sustancial de la viabilidad celular 24 horas después de la irradiación (p=0,024). Sin embargo, después de 48 horas, la viabilidad celular se recuperó sin diferencias significativas. Esto indica que podría haber un impacto negativo temporal en la viabilidad de las células inmediatamente después de la irradiación, pero las células pudieron recuperarse y recuperar su viabilidad con el tiempo. Conclusión: En conclusión, este estudio respalda que la irradiación con un láser de diodo de 970 nm podría estimular la proliferación de GMSC, mantener su capacidad para diferenciarse en linajes condrogénicos y osteogénicos y tiene un impacto mínimo en las características morfológicas de las células. Estos resultados respaldan el uso potencial de láseres NIR en combinación con GMSC como una estrategia prometedora para tratamientos dentales.


Subject(s)
Humans , Low-Level Light Therapy , Cell Proliferation/radiation effects , Lasers, Semiconductor , Mesenchymal Stem Cells/radiation effects , In Vitro Techniques , Gingiva/radiation effects
8.
Braz. j. otorhinolaryngol. (Impr.) ; 89(2): 244-253, March-Apr. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439725

ABSTRACT

Abstract Objective: To analyze the morphofunctional regeneration process of facial nerve injury in the presence of insulin-like growth factor-1 and mesenchymal stem cells. Methods: Fourteen Wistar rats suffered unilateral facial nerve crushing and were randomly divided into two groups. All received insulin-like growth factor-1 inoculation, but only half of the animals received an additional inoculation of mesenchymal stem cells. The animals were followed for 90 days and facial nerve regeneration was analyzed via spontaneous facial motor function tests and immunohistochemistry in the nerve motor nucleus. Results: The group that received the growth factor and stem cells showed a statistically superior mean in vibrissae movements (p<0.01), touch reflex (p = 0.05) and eye closure (p<0.01), in addition to better immunohistochemistry reactivity. There was a statistically significant difference in the mean number of cells in the facial nerve nucleus between the experimental groups (p = 0.025), with the group that received the growth factor and stem cells showing the highest mean. Conclusion: The association between growth factor and stem cells potentiates the morphofunctional regeneration of the facial nerve, occurring faster and more effectively. Level of Evidence: 4, degree of recommendation C.

9.
Braz. j. med. biol. res ; 56: e12611, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1513883

ABSTRACT

Islet transplantation represents a therapeutic option for type 1 diabetes (T1D). Long-term viability of transplanted islets requires improvement. Mesenchymal stromal cells (MSCs) have been proposed as adjuvants for islet transplantation facilitating grafting and functionality. Stem cell aggregation provides physiological interactions between cells and enhances the in situ concentration of modulators of inflammation and immunity. We established a hanging-drop culture of adult human skin fibroblast-like cells as spheroids, and skin spheroid-derived cells (SphCs) were characterized. We assessed the potential of SphCs in improving islet functionality by cotransplantation with a marginal mass of allogeneic islets in an experimental diabetic mouse model and characterized the secretome of SphCs by mass spectrometry-based proteomics. SphCs were characterized as multipotent progenitors and their coculture with anti-CD3 stimulated mouse splenocytes decreased CD4+ T cell proliferation with skewed cytokine secretion through an increase in the Th2/Th1 ratio profile. SphCs-conditioned media attenuated apoptosis of islets induced by cytokine challenge in vitro and importantly, intratesticular SphCs administration did not show tumorigenicity in immune-deficient mice. Moreover, SphCs improved glycemic control when cotransplanted with a marginal mass of allogeneic islets in a diabetic mouse model without pharmacological immunosuppression. SphCs' protein secretome differed from its paired skin fibroblast-like counterpart in containing 70% of up- and downregulated proteins and biological processes that overall positively influenced islets such as cytoprotection, cellular stress, metabolism, and survival. In summary, SphCs improved the performance of transplanted allogeneic islets in an experimental T1D model, without pharmacological immunosuppression. Future research is warranted to identify SphCs-secreted factors responsible for islets' endurance.

10.
Einstein (Säo Paulo) ; 21: eAO0405, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520851

ABSTRACT

ABSTRACT Objective To verify the involvement of the endocannabinoid system in the immunomodulatory profile of stem cells from human exfoliated deciduous teeth, in the presence or absence of TNF-α, and agonist and antagonists of CB1 and CB2. Methods Stem cells from human exfoliated deciduous teeth were cultured in the presence or absence of an agonist, anandamide, and two antagonists, AM251 and SR144528, of CB1 and CB2 receptors, with or without TNF-α stimulation. For analysis of immunomodulation, surface molecules linked to immunomodulation, namely human leukocyte antigen-DR isotype (HLA-DR), and programmed death ligands 1 (PD-L1) and 2 (PD-L2) were measured using flow cytometry. Results The inhibition of endocannabinoid receptors together with the proinflammatory effect of TNF-α resulted in increased HLA-DR expression in stem cells from human exfoliated deciduous teeth, as well as, in these cells acquiring an anti-inflammatory profile by enhancing the expression of PD-L1 and PD-L2. Conclusion Stem cells from human exfoliated deciduous teeth respond to the endocannabinoid system and TNF-α by altering key immune response molecules.

11.
J. appl. oral sci ; 31: e20230209, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1521080

ABSTRACT

Abstract Objectives The endogenous repairing based on the activation of neural stem cells (NSCs) is impaired by neurodegenerative diseases. The present study aims to characterize human stem cells from the apical papilla (hSCAPs) with features of mesenchymal stem cells (MSCs) and to demonstrate the neuronal differentiation of hSCAPs into NSCs through the formation of three-dimensional (3D) neurospheres, verifying the structural, immunophenotyping, self-renewal, gene expression and neuronal activities of these cells to help further improve NSCs transplantation. Methodology The hSCAPs were isolated from healthy impacted human third molar teeth and characterized as MSCs. They were then induced into 3D-neurospheres using a specific neural induction medium. Subsequently, the intra-neurospheral cells were confirmed to be NSCs by the identification of Nissl substance and the analysis of immunofluorescence staining, self-renewal ability, and gene expression of the cells. Moreover, the neuronal activity was investigated using intracellular calcium oscillation. Results The isolated cells from the human apical papilla expressed many markers of MSCs, such as self-renewal ability and multilineage differentiation. These cells were thus characterized as MSCs, specifically as hSCAPs. The neurospheres induced from hSCAPs exhibited a 3D-floating spheroidal shape and larger neurospheres, and consisted of a heterogeneous population of intra-neurospheral cells. Further investigation showed that these intra-neurospheral cells had Nissl body staining and also expressed both Nestin and SOX2. They presented a self-renewal ability as well, which was observed after their disaggregation. Their gene expression profiling also exhibited a significant amount of NSC markers (NES, SOX1, and PAX6). Lastly, a large and dynamic change of the fluorescent signal that indicated calcium ions (Ca2+) was detected in the intracellular calcium oscillation, which indicated the neuronal activity of NSCs-derived hSCAPs. Conclusions The hSCAPs exhibited properties of MSCs and could differentiate into NSCs under 3D-neurosphere generation. The present findings suggest that NSCs-derived hSCAPs may be used as an alternative candidates for cell-based therapy, which uses stem cell transplantation to further treat neurodegenerative diseases.

12.
Rev. méd. (La Paz) ; 29(2): 44-50, 2023. Ilus.
Article in Spanish | LILACS | ID: biblio-1530244

ABSTRACT

Introducción. Las enfermedades neurodegenerativas se caracterizan por la degeneración y pérdida de células nerviosas que conllevan trastornos de disfunción cognitiva y sensoriomotora, enfermedades tales como la esclerosis múltiple (EM) y la enfermedad de Párkinson (EP) entre otras. Recientemente, se ha reportado sobre resultados prometedores de la terapia celular con Células Madre Mesenquimales, células con la capacidad de diferenciarse en células del tejido nervioso, en el tratamiento de enfermedades neurodegenerativas. Objetivo. Evidenciar la utilidad de las células madre mesenquimales de médula ósea en el tratamiento de la esclerosis múltiple y enfermedad de Párkinson, como una posibilidad terapéutica en los tratamientos convencionales no favorables. Material y métodos. Estudio longitudinal prospectivo que consideró pacientes con EM (n=2) y EP (n=2), quienes como tratamiento coadyuvante recibieron células madre mesenquimales de médula ósea mediante método de trasplante autólogo. Resultados. Los pacientes recibieron entre 1 a 3 sesiones de reinfusión de células madre mesenquimales, cuyos seguimientos y evaluaciones periódicas reflejaron respuestas beneficiosas. Se observó mejoras representativas en las respectivas puntuaciones EDSS y UPDRS, así como, en la calidad de vida de los pacientes. Conclusiones . La terapia celular con células madre mesenquimales de médula ósea constituye una posibilidad terapéutica factible para las enfermedades neurodegenerativas como la EM y EP.


Introduction. Neurodegenerative disorders are characterized by a degeneration and loss of nerve cells leading to cognitive and sensorimotor dysfunction disorders, such as multiple sclerosis (MS) and Parkinson's disease (PD) among others. Recently, it has been reported promising results of cell therapy employing Mesenchymal Stem Cells, cells with the ability to differentiate into nervous tissue cells, in the treatment of neurological diseases. Objective. To expose the utility of bone marrow mesenchymal stem cells in the treatment of multiple sclerosis and Parkinson's disease, as a therapeutic option in unfavorable treatment outcomes. Material and methods. Prospective longitudinal study that included MS (n=2) and PD (n=2) patients, who received autologous transplantation of bone marrow mesenchymal stem cells as adjuvant treatment. Results. Patients received autologous MSC therapy from 1 to 3 reinfusions, follow-up and regular evaluations reflected beneficial responses. Representative improvements concerning patients' respectively EDSS or UPDRS scores, as well as in their quality of life were observed. Conclusions. Mesenchymal stem cells therapy constitutes a feasible therapeutic option for neurodegenerative disorders such as MS and PD.

13.
Journal of Zhejiang University. Science. B ; (12): 115-129, 2023.
Article in English | WPRIM | ID: wpr-971474

ABSTRACT

Ex vivo culture-amplified mesenchymal stem cells (MSCs) have been studied because of their capacity for healing tissue injury. MSC transplantation is a valid approach for promoting the repair of damaged tissues and replacement of lost cells or to safeguard surviving cells, but currently the efficiency of MSC transplantation is constrained by the extensive loss of MSCs during the short post-transplantation period. Hence, strategies to increase the efficacy of MSC treatment are urgently needed. Iron overload, reactive oxygen species deposition, and decreased antioxidant capacity suppress the proliferation and regeneration of MSCs, thereby hastening cell death. Notably, oxidative stress (OS) and deficient antioxidant defense induced by iron overload can result in ferroptosis. Ferroptosis may inhibit cell survival after MSC transplantation, thereby reducing clinical efficacy. In this review, we explore the role of ferroptosis in MSC performance. Given that little research has focused on ferroptosis in transplanted MSCs, further study is urgently needed to enhance the in vivo implantation, function, and duration of MSCs.


Subject(s)
Humans , Antioxidants/metabolism , Ferroptosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Iron Overload/metabolism
14.
Chinese Journal of Biotechnology ; (12): 1773-1788, 2023.
Article in Chinese | WPRIM | ID: wpr-981169

ABSTRACT

A triple-transgenic (tyrosine hydroxylase/dopamine decarboxylase/GTP cyclohydrolase 1, TH/DDC/GCH1) bone marrow mesenchymal stem cell line (BMSCs) capable of stably synthesizing dopamine (DA) transmitters were established to provide experimental evidence for the clinical treatment of Parkinson's disease (PD) by using this cell line. The DA-BMSCs cell line that could stably synthesize and secrete DA transmitters was established by using the triple transgenic recombinant lentivirus. The triple transgenes (TH/DDC/GCH1) expression in DA-BMSCs was detected using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Moreover, the secretion of DA was tested by enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). Chromosome G-banding analysis was used to detect the genetic stability of DA-BMSCs. Subsequently, the DA-BMSCs were stereotactically transplanted into the right medial forebrain bundle (MFB) of Parkinson's rat models to detect their survival and differentiation in the intracerebral microenvironment of PD rats. Apomorphine (APO)-induced rotation test was used to detect the improvement of motor dysfunction in PD rat models with cell transplantation. The TH, DDC and GCH1 were expressed stably and efficiently in the DA-BMSCs cell line, but not expressed in the normal rat BMSCs. The concentration of DA in the cell culture supernatant of the triple transgenic group (DA-BMSCs) and the LV-TH group was extremely significantly higher than that of the standard BMSCs control group (P < 0.000 1). After passage, DA-BMSCs stably produced DA. Karyotype G-banding analysis showed that the vast majority of DA-BMSCs maintained normal diploid karyotypes (94.5%). Moreover, after 4 weeks of transplantation into the brain of PD rats, DA-BMSCs significantly improved the movement disorder of PD rat models, survived in a large amount in the brain microenvironment, differentiated into TH-positive and GFAP-positive cells, and upregulated the DA level in the injured area of the brain. The triple-transgenic DA-BMSCs cell line that stably produced DA, survived in large numbers, and differentiated in the rat brain was successfully established, laying a foundation for the treatment of PD using engineered culture and transplantation of DA-BMSCs.


Subject(s)
Rats , Animals , Dopamine , Parkinson Disease/metabolism , Mesenchymal Stem Cells/metabolism , Cell Line , Brain/metabolism , Cell Differentiation , Mesenchymal Stem Cell Transplantation
15.
Acta cir. bras ; 38: e384523, 2023. tab, graf
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1513544

ABSTRACT

ABSTRACT Purpose: Enterocutaneous fistula (ECF) is a condition in which there is an abnormal connection between the intestinal tract and the skin. It can lead to high morbidity and mortality rates despite the availability of therapeutic options. Stem cells have emerged as a potential strategy to treat ECF. This study aimed to evaluate the effect of adipose tissue-derived stem cells (ASC) on ECF in an experimental model. Methods: ECF was induced in 21 Wistar rats, and after one month, they were divided into three groups: control group (C), culture medium without ASC group (CM), and allogeneic ASC group (ASC). After 30 days, the animals underwent macroscopic analysis of ECF diameter and histopathological analysis of inflammatory cells, tissue fibrosis, and vascular density. Results: The study found a 55% decrease in the ECF diameter in the ASC group (4.5 ± 1.4 mm) compared to the control group (10.0 ± 2.1 mm, p = 0.001) and a 59.1% decrease in the CM group (11.0 ± 4.3 mm, p = 0.003). The fibrosis score in the ASC group was 20.9% lower than the control group (p = 0.03). There were no significant differences in inflammation scores among the three groups. Conclusions: This study suggests that ASC treatment can reduce ECF diameter, and reduction in tissue fibrosis may be a related mechanism. Further studies are needed to understand the underlying mechanisms fully.

16.
Chinese Journal of Trauma ; (12): 465-472, 2023.
Article in Chinese | WPRIM | ID: wpr-992624

ABSTRACT

Bone defects are mostly caused by severe trauma, infection, tumor resection and congenital malformations, which adversely affect their health and quality of life. So far, the bone defects are mainly filled with autologous or allogeneic bone grafting, which has problems such as donor shortage, secondary bone injury and scarring. In recent years, the rise of bone tissue engineering has provided a new way for repair of bone defects, in which mesenchymal stem cell (MSC) sheets prepared by using the principle of tissue engineering can well solve the above problems of autologous or allogeneic bone grafting. With the development of preparation technology, new bone defect repair materials such as decellularized extracellular matrix (ECM) sheets and MSC/ECM clumps have been derived on the basis of MSC sheets. Therefore, the authors reviewed the preparation and the role of MSC sheets and their derivatives in bone defect repair, hoping to provide a reference for basic research and clinical treatment related to bone defect repair.

17.
Chinese Journal of Trauma ; (12): 277-282, 2023.
Article in Chinese | WPRIM | ID: wpr-992599

ABSTRACT

Bone defects are bone loss caused by factors such as severe trauma, infection, tumor resection and congenital malformations. Bone transplantation, induced membrane technique or stem cell bone tissue engineering is needed for the defects that are difficult to heal naturally. However, the techniques related to bone transplantation are complex and have limited application scope; the induced membrane technique shows uncontrollable cement degradation rate and requires a second surgery; the stem cell bone tissue engineering still has some unstable factors such as undirected differentiation of stem cells. Exosomes are the key liposomes in the communication between cells. Compared with natural stem cell-derived exosomes, engineered exosomes with the advantages of high production and low immunogenicity are expected to replace stem cells in clinical applications. The authors review the mechanism of action of mesenchymal stem cell (MSC)-derived exosomes in repairing bone defects and application of engineered exosomes based on MSC in bone regeneration, so as to provide new ideas for the basic research and clinical treatment of bone defects.

18.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 859-865, 2023.
Article in Chinese | WPRIM | ID: wpr-1005766

ABSTRACT

【Objective】 To study the effects of miR-30e-5p from bone marrow mesenchymal stem cell-derived exosomes(BMSC-exos) on high glucose (HG)-induced HK-2 cell pyroptosis and explore an alternative strategy to manage diabetic kidney disease (DKD). 【Methods】 BMSC-exos were isolated and internalized into HK-2 cells treated with HG to measure viability and cytotoxicity. The secretion of IL-1β and IL-18 was measured by ELISA. Pyroptosis was assessed by flow cytometry. The levels of miR-30e-5p, IL-1β, and IL-18 were measured. The expression of pyroptosis-associated cytokine proteins was determined. 【Results】 BMSC-exos decreased LDH, IL-1β, and IL-18 secretion and inhibited the expression of the pyroptosis-related factors (IL-1β, caspase-1, GSDMD-N, and NLRP3) in HG-induced HK-2 cells. Moreover, miR-30e-5p depletion in BMSC-exos promoted HK-2 cell pyroptosis. 【Conclusion】 BMSC-derived exosomal miR-30e-5p inhibits caspase-1-mediated pyroptosis in HG-induced HK-2 cells, which might provide a new strategy for treating DKD.

19.
Journal of Clinical Hepatology ; (12): 2920-2925, 2023.
Article in Chinese | WPRIM | ID: wpr-1003285

ABSTRACT

Autoimmune hepatitis (AIH) is a type of chronic hepatitis caused by the autoimmune system attacking hepatocytes, and its chronic progression may lead to liver cirrhosis and even hepatocellular carcinoma. Currently, pharmacotherapy and liver transplantation are the main treatment methods for AIH, but both methods have their own limitations, which limits the clinical benefits of patients. Therefore, it is a critical issue to search for new therapeutic agents and methods. Recent studies have shown that mesenchymal stem cells (MSC) and their exosomes can improve the symptoms of patients with AIH by suppressing inflammatory response, enhancing the regeneration of hepatocytes, and regulating the immune system and thus have wide application prospects in the treatment of AIH. By summarizing related articles, this article reviews the possible mechanisms and application of MSC and their exosomes in the treatment of AIH, in order to provide new ideas for the clinical treatment of AIH.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 227-234, 2023.
Article in Chinese | WPRIM | ID: wpr-997676

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) are derived from stem cells isolated from bone marrow and have the potential for multidirectional differentiation and self-renewal. Under certain conditions, BMSCs can be induced to differentiate into osteoblast (OB), chondrocyte, adipocyte, fibroblast, etc. BMSCs play an important role in maintaining the stability of bone structure and balancing bone metabolism. Promoting the proliferation of BMSCs and inducing their differentiation into OB of great significance for the clinical prevention and treatment of osteoporosis, bone defects, fracture healing, and other diseases. Because the proliferation and osteogenic differentiation of BMSCs are complex processes controlled by multiple genes and regulated by multiple signal transduction pathways, traditional Chinese medicine (TCM) happens to have the advantages of multi-bioactive component, multi-target, and multi-pathway synergism, which can affect the proliferation and differentiation of BMSCs through multiple channels and induce the proliferation of BMSCs. The transcription and expression of genes related to osteogenesis can be enhanced to promote the differentiation of BMSCs into OB, so as to achieve the purpose of preventing and treating osteoporosis, bone defects, and other bone diseases. Based on the literature on the intervention of TCM monomers and compounds in the proliferation and osteogenic differentiation of BMSCs, this study reviewed TCM monomers and compounds in promoting the proliferation and osteogenic differentiation of BMSCs by regulating secreted glycoprotein (Wnt), neurogenic locus notch homolog protein (Notch), mitogen-activated protein kinase (MAPK), phosphatidylinositol-3 kinase (PI3K) /protein kinase B (Akt), bone morphogenetic protein (BMP)/Smad, Janus kinase (JAK)/signal transducer and activator of transcription protein (STAT), osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B (RANK)/RANK ligand (RANKL), and other signaling pathways to provide new ideas for the research and clinical application of Chinese medicine in the prevention and treatment of orthopedic diseases.

SELECTION OF CITATIONS
SEARCH DETAIL